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Prediction of immunogenicity: in silico paradigms, ex vivo and in
vivo correlates
Anne S De Groot1,2,3, Julie McMurry1 and Lenny Moise1,3
Immunogenicity can be a major obstacle to successful protein

drug therapy. Antidrug antibodies may neutralize therapeutic

function, influence pharmacokinetics and, in some cases, lead

to severe adverse effects. These effects depend on factors

including dose, regimen, delivery route and contaminants,

among others. Importantly, immunogenicity is a consideration

that is better addressed during preclinical development before

complications arise in clinical trials or following licensure. This

article will address the development and application of

computational tools for immunogenicity assessment of protein

therapeutics, and validation of those predictions using

peripheral blood from exposed subjects or alternative in vivo

methods.
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Introduction
As anticipated, molecular biology has revolutionized

medicine and the treatment of human diseases. The

revolution is ongoing: researchers continue to identify

new approaches for modulating cellular processes and

means of delivering these new therapies to their targets

with heretofore-unimaginable precision. On the basis of

these findings, armies of molecular biologists are devel-

oping novel therapeutic proteins, monoclonal antibodies

(mAbs) and antibody-like protein scaffolds, intent on

improving human health. In the rush to deliver the

promise of molecular medicine, biologists have, on

occasion, overlooked the well-known implications of

protein immunogenicity. In addition, the determinants

of immunogenicity of autologous or human-like proteins

have not been fully determined, meaning that assump-
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tions about immune tolerance, too, require a second look

in protein therapy design.

Fortunately, immune response to foreign proteins is rela-

tively well understood, owing to years of thorough study

of parameters influencing vaccine efficacy. Factors in-

cluding delivery route delivery vehicle, dose regimen,

aggregation, innate immune system activation and the

ability of the protein to interface with the humoral (B cell)

and cellular (T cell) immune systems, all impact the

potential immunogenicity of vaccine immunogens when

delivered to humans (for a review of immunogenicity

determinants, see De Groot and Scott [1�]).

Similarly, protein therapeutics, when administered in an

immunostimulatory milieu, engender both cellular and

humoral immune responses. Development of antidrug

antibodies (ADA) is considered an adverse immune

response, as ADA may neutralize the therapeutic effects

of the drug and/or alter its pharmacokinetics. T cells are

certainly involved in this immune response when IgG

class ADA are observed because antibody isotype switch-

ing is a hallmark of T-dependent antigens [2�].

More serious adverse events can be provoked if ADA

crossreact with a crucial autologous protein. Examples of

adverse ADA responses include autoimmune thrombo-

cytopenia (ITP) following exposure to recombinant

thrombopoietin [3�], and pure red cell aplasia, which

was associated with a particular formulation of erythro-

poietin (Eprex) [4�]. Since the impact of immunogenicity

can be quite severe, regulatory agencies are developing

risk-based guidelines for immunogenicity screening [5�].

In silico paradigms
Immunoinformatics algorithms for identifying T-cell epi-

topes have improved dramatically since they were first

developed by Berzofsky, Margalit, and DeLisi in the

1980s [6]. It is now possible to measure the T-cell epitope

content of a protein relatively accurately using in silico
tools, and also to evaluate the regional and overall

immune potential of a protein therapeutic. Given the

resulting ‘immunogenicity score’ of a protein [7�], and

taking into consideration other determinants as described

above, it is possible to make an informed decision about

the likelihood that a protein will provoke an immune

response. For example, the EpiMatrix suite of compu-

tational tools, together with ex vivo immunogenicity test-

ing, has been applied to evaluate protein therapeutics in

the preclinical phase and correctly predicted clinical
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immunogenicity in at least two cases which were sub-

sequently published [8�,9�]. Recognizing the value of

preclinical immunogenicity screening, a number of thera-

peutic protein developers have incorporated in silico, ex
vivo, and in vivo preclinical immunogenicity screening

protocols into their product development strategy.

T-cell epitope prediction

‘In silico’ predictions of T-helper epitopes have been

available for more than two decades, and consequently,

their application to vaccine design [10–12] and to selec-

tion of autoimmunity epitopes [13] is well documented.

During this time, the number of T-cell epitope prediction

tools has steadily increased (for reviews, see Petrovsky

and Brusic [14] and De Groot and Berzofsky [15]).

The EpiMatrix approach is described here to illustrate

the basic process of screening a protein therapeutic for

immunogenicity. A protein sequence is first parsed into

overlapping 9-mer peptide frames, each of which is then

evaluated for binding potential to each of eight common

class II HLA alleles that ‘cover’ the genetic backgrounds

of most humans worldwide [16]. Normalization of allele-

specific scores makes it possible to compare scores of any

9-mer across multiple HLA alleles and enables immuno-

genicity prediction on a global scale [17].

By calculating the density of high-scoring frames within a

protein, it is possible to estimate a protein’s overall
Please cite this article in press as: De Groot AS, et al. Prediction of immunogenicity: in silico paradig

Figure 1

EpiMatrix immunogenicity scale analysis of human FVIII sequence (from Ge

epitope content per 10 000 amino acids, of wild-type FVIII, B domain depleted

FVIII might be as immunogenic, if not more immunogenic than wild-type FVI

type, his/her exposure to autologous FVIII (whether entirely absent or mutate

FVIII source (recombinant or natural), and whether the FVIII is contaminated

the components included in the final formulated drug.
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‘immunogenicity score’. In Figure 1 several types of

FVIII and the B domain of FVIII provide an illustration

of the concept. In addition, subregions of densely packed

high-scoring frames can be identified, and regional or

‘cluster’ scores can be calculated (Figure 2) [6,7�,8�,18�].
We and others have observed that potential immunogeni-

city is not randomly distributed throughout protein

sequences but instead tends to reside in regions (which

are often also immunodominant) [19–21]. A T-cell epitope

‘cluster’ usually ranges from 9 to about 25 amino acids and

can contain anywhere from 4 to 40 binding motifs. Regions

of proteins where HLA binding potentials cluster, reaching

a cumulative EpiMatrix sum of scores that is greater than

10, are associated with significant T-cell immunogenic

potential [22,23].

Epitopes: tolerance and ignorance

Not all clusters of immunogenic potential can be con-

sidered to be potentially immunostimulatory. Would-be

epitopes in autologous proteins might have triggered T

cells that are absent from the peripheral circulation, since

T cells that are auto-reactive are said to be deleted in

thymic development. However, some T cells specific for

autologous proteins escape thymic deletion and become

natural regulatory T cells (Tregs); they appear to serve as

regulators or suppressors of autoimmune, auto-reactive

immune responses [24�]. Just as the inadvertent addition

of stimulatory T-cell (T-effector) epitopes to proteins may

lead to increased immunogenicity, removal or alteration of
ms, ex vivo and in vivo correlates, Curr Opin Pharmacol (2008), doi:10.1016/j.coph.2008.08.002

nbank). This graph shows the potential immunogenicity based on T-cell

FVIII, and B domain itself. The analysis suggests that B domain depleted

II. Of course, the effect of FVIII is also determined by an individual’s HLA

d but still expressed), route of administration, dose, frequency of dosing,

with innate immune system triggers such as CpG DNA or leachates from
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Figure 2

FVIII C2 ClustiMer analysis. A cluster map for domain C2 charts the location and potential immunogenicity of each cluster. The location of the cluster is

indicated by amino acid number on the x-axis and the width of the bar correlates with the length of the cluster. EpiMatrix Cluster Score is shown on the

y-axis; a score above 10 indicates high likelihood of immunogenicity. The red bar at right indicates the span of two published T-cell epitopes [57].
regulatory T-cell epitopes in the drug development pro-

cess may alter the natural T-regulatory immune response

to recombinant autologous proteins. The link between T-

cell (and HLA-restricted) immune response and the de-

velopment of autoantibodies is still being defined; early

evidence points to the reduction of Treg immune

responses and to the induction of T-effector responses

as significant contributors in the context of immune

responses [25,26].

The conceptual basis of tolerance induction for protein

therapeutics is the observation that immunoglobulin

therapies induce expansion of Tregs in vitro and in vivo
[27]. We have shown that coincubation of donor PBMC

with T-cell epitopes derived from autologous proteins can

lead to suppression of immune response to bystander

antigens in human PBMCs, and that the corresponding

murine epitopes suppress in vivo immune response in

HLA DR4 transgenic mice [58]. Building on these obser-

vations, we are now evaluating whether modification of

autologous proteins to include such Treg epitopes will

lead to the development of less immunogenic antibodies

and improved replacement proteins for protein deficiency

diseases.

The dynamic balance between regulatory T-cell and T-

effector (T-helper or cytotoxic T cell) immune responses

to autologous proteins is best understood in the context of

a mutated or partially deleted protein and recombinant
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protein replacement therapy. For example, FVIII may be

expressed in a truncated or mutated nonfunctional form

in some individuals. Although Figure 1 provides an

illustration of the potential immunogenicity of FVIII

(based on total T-cell epitope count), it is important to

note that the presence of regulatory T-cell epitopes in

FVIII (because of recognition of some of these epitopes

by Treg cells) may affect the expression of replacement

FVIII immunogenicity in the individual patient. Thus,

the immunogenicity of replacement FVIII might be

better represented by summing the net effect of T-

effector epitopes (positive signals for immunogenicity),

regulatory T-cell epitopes (suppressors) and epitopes to

which T cells have been deleted in the course of thymic

development (neutral).

B-cell epitope prediction

It would be advantageous to predict B-cell antigenicity

to identify neutralizing antibody targets. Computational

tools that accurately predict B-cell epitopes remain

elusive because of the conformational dependence of

antibody:antigen interactions. B-cell epitope prediction

tools such as 3DEX and CEP [28–30] do not, as far as

can currently be determined, accurately predict B-cell

epitopes on a high-throughput basis. Notably, in some

cases, defining a T-cell epitope may lead to identifi-

cation of a B-cell epitope since B-cell epitopes have

been shown to colocalize with T-helper epitopes

[31,32].
ms, ex vivo and in vivo correlates, Curr Opin Pharmacol (2008), doi:10.1016/j.coph.2008.08.002
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De-immunization

De-immunization by epitope modification is an approach

based on the disruption of HLA binding, an underlying

requirement for T-cell stimulation. The idea of rational

epitope modification is rooted in the natural process that

occurs when tumor cells and pathogens evolve to escape

immune pressure by accumulating mutations that reduce

the binding of their constituent epitopes to host HLA,

rendering the host cell unable to ‘signal’ to T cells the

presence of the tumor or pathogen [33].

Ex vivo and in vivo correlates
Human T-cell assays

Immunogenicity screening using immunoinformatics

tools requires validation in vitro and in vivo. If blood from

antigen-exposed individuals is available, predicted pep-

tide epitopes can be tested for their reactivity with T

cells. The type of immune response (effector or regulat-

ory T cell) can be determined by evaluating cell surface or

intracellular markers corresponding to the different

classes of T cells such as CD4/CD25, FoxP3, and

CD127. Class II (T-helper) epitopes can be ‘promiscu-

ous’; that is to say that a single sequence can fit MHC of

various haplotypes because of the open-ended configur-

ation of the peptide-binding groove.

ELISA and ELISpot are related methods for detecting

antigen-specific T-cell responses by measurement of

cytokines secretion (e.g. interferon-gamma, IL-2, and

IL-4). T-cell proliferation can be measured by the dilution

of a fluorescent dye or by radioactive thymidine incorp-

oration. T cells that respond to a particular epitope can be

directly labeled using tetramers (comprised of HLA class

II:peptide complexes), or the number and phenotype of T

cells that respond to the antigen can be determined using

cell surface markers and intracellular cytokine staining

[34]. The pros and cons of the different types of T-cell

assays have been evaluated in side-by-side studies [35�].

HLA transgenic mouse models

Most proteins intended for therapeutic use in humans are

relatively foreign in mice and therefore immunogenic

[36]. Although protein therapeutics are evaluated in many

different animal models, these studies typically do not

consider the effect of T-cell recognition of peptides in the

context of HLA. Therefore, immunogenicity analyses in

non-HLA transgenic models should be interpreted with

caution as murine, rat and nonhuman primate MHC differ

from human HLA at the amino acid level, and their

responses do not necessarily reflect those of humans.

Indeed, different strains of mice also possess different

MHC types, which is one explanation for differential

immune responses to pathogens, vaccines and thera-

peutic mAbs, in C57Bl/6 and Balb/C mice [37].

Accurate preclinical evaluation of protein therapeutics on

de novo T-cell responses can be done in mice that are
Please cite this article in press as: De Groot AS, et al. Prediction of immunogenicity: in silico paradig
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transgenic for human MHC (HLA Tg mice) [38]. Those

HLA transgenic mice express that have human HLA

genes and have a MHC class II deficient background

[39] are preferred, for this purpose, since CD4 T-cell-

mediated immune response is completely restricted by

human HLA molecules, and not by mouse MHC.

T-cell responses in infected humans correlate directly

with T-cell responses in immunized HLA transgenic

mice [40,41]; thus, HLA transgenic mice are now routi-

nely used to assay and optimize (human) epitope-driven

vaccines in preclinical studies [42–44]. Fortunately,

several transgenic mouse strains expressing the most

common HLA DR molecules are available (HLA

DRB1*0101, *0201, *0301, *0401, *1501) [39,45]

enabling immunogenicity measurements in models that

represent a large proportion of the human population.

Sequence differences between human and murine

proteins add an additional layer of complexity to the

evaluation of human protein immunogenicity in mice.

These differences may result in dramatic immune

responses in mice where none would have been encoun-

tered in humans or vice versa; this phenomenon has been

exploited for the development of cancer vaccines [46].

The degree of foreignness may depend on the number of

amino acids that are different among peptides that are

processed and presented by the animal MHC molecule.

One means of addressing this issue is to develop mice that

are transgenic for the human protein of interest, however,

the issue of T-cell epitope presentation in the context of

class II murine MHC remains problematic in these

models [47].

A number of groups are pioneering studies of ‘immune-

system-humanized’ mice as a translational model for

studying immunogenicity [48–52]. New mouse strains

such as NOD-SCID IL2rgamma(null) mice that lack

the IL-2 receptor common gamma chain make the de-

velopment of such mice possible. These novel chimeric

mice lack adaptive immune function, display multiple

defects in innate immunity, and support heightened

levels of human immune cell engraftment. The models

are created by engraftment of hematopoietic stem cells or

peripheral blood mononuclear cells into immunodeficient

mice; one drawback of these mice is that each mouse

represents only one single patient’s immune phenotype;

thus multiple immune-system-humanized mice would be

required for adequate representation of human MHC

diversity [53�].

When in vivo studies are not possible

In the absence of animal models and access to exposed

human blood, in vitro assays can be used to determine the

potential for predicted epitopes to engender immune

responses. In particular, HLA binding assays can be used

to assess the affinities of therapeutic-derived epitope
ms, ex vivo and in vivo correlates, Curr Opin Pharmacol (2008), doi:10.1016/j.coph.2008.08.002
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sequences for multiple HLA alleles. In vitro evaluation

of MHC binding can be performed by quantifying

the ability of exogenously added peptides to compete

with a fluorescently labeled known MHC ligand [54].

Competition-based HLA binding assays can be adapted

for high-throughput in vitro [55�]. A correlation

between HLA binding and immunogenicity is often

observed [56].

Conclusion
In the context of studies of therapeutic proteins, in vivo
confirmation validates the accuracy of immunogenicity

screening using in silico methods. Because T-cell epitopes

are necessary for a robust humoral response, accurate T-

cell epitope predictions will correlate to the actual

response in vivo. The effect of regulatory T-cell epitopes

and their counterparts, the effector T-cell epitope, need

to be taken into consideration when measuring the

immune potential of a therapeutic protein. The imple-

mentation of regular protocols for screening therapeutic

proteins in preclinical stages, using epitope mapping in

combination with in vitro and in vivo studies, may allow

researchers to avoid the development of ADA and may

also reduce the costs of recombinant protein drug de-

velopment by eliminating candidates that are determined

to be too immunogenic.
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